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ABSTRACT

This study is an aviation-based application of NOAA’s second-generationmedium-rangeGlobal Ensemble

Forecast System Reforecast (GEFS/R; i.e., hindcast or retrospective forecast) dataset. The study produced a

downscaled probabilistic prediction of instrument flight conditions at major U.S. airports using an analog

approach. This represents an initial step toward applications of reforecast data to probabilistic aviation de-

cision support services. Results from this study show that even at the very coarse resolution of the GEFS/R

dataset, the analog approach yielded skillful probabilistic forecasts of flight conditions (i.e., instrument flight

rules vs visual flight rules) at most of the Federal AviationAdministration (FAA)’s Core 30 airports. This was

particularly true over the central and eastern United States, including the important Golden Triangle, where

aircraft flow affects traffic flow management across the entire national airspace system. Additionally, the

results suggest that reforecast systems utilizing better horizontal and vertical resolution, in both the modeling

system and the reforecast archive, would be very useful for aviation forecasting applications.

1. Introduction

The Next Generation Global Prediction System

(NGGPS) is a National Oceanic and Atmospheric

Administration (NOAA)/National Weather Service

(NWS) initiative to expand and accelerate development

and implementation of global weather prediction and

data assimilation, as well as increase the accuracy of

weather forecasts and build foundational forecast

guidance for the next several decades. As part of this

initiative, this study utilizes NOAA’s second-generation

medium-range Global Ensemble Forecast System Re-

forecast (GEFS/R) dataset (Hamill et al. 2013) to ex-

plore cloud ceiling and visibility prediction at major

airports across the United States. Reforecasts (known

synonymously as hindcasts or retrospective forecasts)

provide a large sample of historical model/ensemble

forecasts available to statistically postprocess real-time

forecasts using an identical (i.e., statistically consistent)

model. The goal of the postprocessing is to produce

calibrated and reliable forecasts, often of rare or in-

frequent events, by accounting for both chaotic (i.e.,

initial condition uncertainty) and systematic model

errors. The second-generation reforecast dataset is

derived from the 2012 version of the 0000 UTC cycle of

the NWS Global Ensemble Forecast System (GEFS).

While numerous studies have demonstrated the value

of reforecasting for ensemble postprocessing and de-

cision support (e.g., Hamill et al. 2006, 2013, 2015;

Wilks and Hamill 2007; Hagedorn et al. 2008), only one

prior study has been specific to aviation (Herman and

Schumacher 2016).

Poor weather conditions have been shown to dra-

matically increase the rate of aviation fatalities. For

example, under instrument flight rules (IFR), defined

as a cloud ceiling below 1000 ft above ground level

and/or visibility of less than 3 mi, about two-thirds of

all general aviation accidents are fatal—a rate much

higher than the overall fatality rate for all general aviation

incidents (NTSB 2014). Similarly, between 1983 and 2009
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over the Gulf of Mexico, 16% of helicopter accidents and

40% of the resulting fatalities were attributable to poor

weather conditions (Baker et al. 2011).

In addition to safety, accurate predictions of ceiling

and visibility may have far-reaching economic and

traffic flow management implications. Probabilistic

forecasts for both visibility conditions and ceilings sur-

rounding airports allow for cost-based critical decision

thresholds to be created for fuel loading in accordance

with airlines’ planning timelines (Keith and Leyton

2007). Increasing skill at longer lead times allows for

more efficient and effective planning, with potential

savings of tens of millions of dollars annually via fuel

cost reductions for many major airlines (Keith and

Leyton 2007). Additionally, the ability to adjust flight

plans based on predicted ceilings and visibilities that

reduce arrival and departure rates could streamline air

traffic movement across the United States. While mod-

ern instrument landing systems (ILS) allow aircraft to

land in weather conditions well below IFR, closely

spaced runways and competing ILS capacity (e.g., New

York metropolitan area airports) can reduce operations

substantially below peak arrival rates. For example, San

Francisco International Airport (SFO) requires visual

flight rules (VFR) to support its dual-runway-approach

configuration. The presence of low clouds in the SFO

approach zone reduces arrival capacity by 33%–50%

(Reynolds et al. 2012).

This study takes a preliminary look at downscaling

NOAA’s GEFS/R dataset to the Federal Aviation Ad-

ministration’s (FAA) Core 30 airports (Table 1). In the

context of this work, downscaling refers to the post-

processing of the relatively low-resolution reforecast

grids to produce a flight condition prediction (i.e., IFR

or VFR conditions based on the ceiling and visibility)

at a point. The points evaluated are the Core 30 airports,

which are 30 of the nation’s busiest airports used by the

FAA to monitor aviation system safety and efficiency.

All Core 30 airports are used in this study, with the ex-

ception of Honolulu, Hawaii (HNL). A model clima-

tology and probabilistic ceiling and visibility forecasts

through 30h are created using an analog reforecast ap-

proach (Hamill et al. 2006; Hamill and Whitaker 2006).

A period of 30 h was chosen because it encompasses the

24-h period of most terminal aerodrome forecasts

(TAFs), and it is a reasonable traffic flow management

outlook period in the aviation community. Similar to the

work of Hamill et al. (2004), the ensemble mean refor-

ecasts are used for determining analogs at all airports.

Historical METAR observations of ceiling and visibility

at each airport serve as ground truth. Additionally, the

analog reforecast approach examined here is compared

to TAFs at three airports within the aviation Golden

Triangle: John F. Kennedy International (JFK), Chicago

O’Hare International (ORD), and Hartsfield–Jackson

Atlanta International (ATL).

This next section provides a description of the datasets,

while section 3 provides an overview of the data post-

processing, including the analog forecast approach and

the statistical methods employed. This is followed by a

summary of the analog forecast system results for pre-

dicting both IFR and VFR for the continental United

States (CONUS); these results are further examined

seasonally for the Golden Triangle in section 4. Section 5

contains a general discussion of possible reasons for ob-

served differences across theCONUS and suggestions for

future refinements and potential applications for the

aviation weather community. Section 6 contains a short

summary and a few concluding remarks highlighting po-

tential future paths for this research.

TABLE 1. The Core 30 airports across CONUS by call sign and airport name. Golden Triangle airports considered here have been

italicized. Intl 5 international.

Call sign Airport name and state Call sign Airport name and state

ATL Hartsfield–Jackson Atlanta Intl, GA SFO San Francisco Intl, CA

CLT Charlotte Douglas Intl, NC SLC Salt Lake City Intl, UT

DFW Dallas/Fort Worth Intl, TX DTW Detroit Metropolitan Wayne County, MI

FLL Fort Lauderdale/Hollywood Intl, FL MDW Chicago Midway, IL

IAH George Bush Houston Intercontinental, TX MSP Minneapolis/St. Paul Intl, MN

MCO Orlando Intl, FL ORD Chicago O’Hare Intl, IL

MEM Memphis Intl, TN BOS Boston Logan Intl, MA

MIA Miami Intl, FL BWI Baltimore/Washington Intl, MD

TPA Tampa Intl, FL DCA Ronald Reagan Washington National, VA

DEN Denver Intl, CO EWR Newark Liberty Intl, NJ

LAS Las Vegas McCarran Intl, NV JFK John F. Kennedy Intl, NY

LAX Los Angeles Intl, CA IAD Washington Dulles Intl, VA

PHX Phoenix Sky Harbor Intl, AZ LGA New York LaGuardia, NY

SAN San Diego Intl, CA PHL Philadelphia Intl, PA

SEA Seattle/Tacoma Intl, WA

1766 WEATHER AND FORECAST ING VOLUME 32

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:51 PM UTC



2. Data

a. Model data

This effort utilizes the entire 30 years of NOAA’s

second-generation GEFS/R dataset, which uses the

identical modeling system as GEFS, version 9.0.1. The

ensemble forecasts are initialized once daily at 0000UTC

to create 10 perturbed forecast members and one control

forecast. Running from December 1984 to the present,

these reforecasts have been made available at 3-hourly

intervals for lead times of 0–72h, and then 6-hourly in-

tervals out to 16 days. To build the historical reforecast

dataset, the GEFS was run at T254L42 for the first 8 days

(42 layers and an equivalent grid spacing of approxi-

mately 40km at 408 latitude), and then T190L42 for days

8–16 (about 54km at 408 latitude). This study utilized only
the first 2 days of the reforecasts. The global fields are

at 18 3 18 grid spacing for 98 different variables with

an additional 28 variables available at the native resolu-

tion. All of the data used in this study are extracted from

the 18 3 18 grids. This dataset can be accessed online

(http://www.esrl.noaa.gov/psd/forecasts/reforecast2/). See

Hamill et al. (2013) for a complete description of the

construction and data availability of the GEFS/R dataset.

For this study, output at 3-h intervals through forecast

hour 30 from the daily 0000 UTC 1 December 1984–

31 May 2015 reforecasts are used. Utilized fields include

surface pressure and temperature at 2m and available

isobaric pressure levels (1000, 850, 700, 500 hPa), and

specific humidity at 2m and available isobaric pressure

levels (1000, 850, 700, 500 hPa).

b. Observational data

For the same period, aviation routine weather reports

(METARs) at the Core 30 airports are used as ground

truth for ceiling height and surface visibility. METARs

are generated every hour by observations made at each

airport by an Automated Surface Observing System

(ASOS). For more information on ASOS instrumen-

tation and METAR generation, see NOAA (1998).

Data were accessed through NOAA’s National Centers

for Environmental Information (NCEI) website (www.

ncei.noaa.gov/).

c. Forecast data

NWS TAFs (NWS 2016) for three Golden Triangle

airports (JFK, ATL, and ORD) from January 2010

throughMay 2015 are used as a more competitive test of

the analog forecast method than climatology. NWS

TAFs are used in a variety of applications throughout

the aviation industry, including general and commercial

aviation, and civilian and military operations. TAFs are

also a key component of flight planning and aircraft

movement within the National Airspace System (NWS

2016). The NWS TAF represents forecast conditions at

an airport (within 5 statute miles of the center of an

airport’s runway complex) and is issued four times per

day (amended as necessary), typically covering the

next 24 h (some international airports require 30 h).

The TAF is a formatted forecast consisting of weather,

surface wind (speed and direction), visibility, cloud

layers and ceiling, and low-level wind shear. By design,

TAFs may include more detail in the first 12 h and less

thereafter, as the latter portion is primarily for stra-

tegic planning. Historical TAFs were accessed through

Ogimet (www.ogimet.com), which collects, stores, and

makes available public data from sources including

NOAA. The truncated period of study is due to data

availability on the site. The NWS uses its Stats-On-

Demand software (NWS 2016) for quality assurance.

Lorentson (2013) shows statistical results for several

years of NWS TAF forecasts of IFR, along with the

Government Performance and Results Act (GPRA)

goals for 2007–16.

3. Methods

a. Data preparation

For each airport, the four surrounding model fore-

cast grid points are identified and bilinear in-

terpolation is applied to estimate the forecast value at

an airport’s location. Relative humidity is calculated at

every pressure level from the available grids of forecast

temperature, saturation mixing ratio, and specific hu-

midity. Vertical profiles of dewpoint temperatures are

derived from the calculated relative humidity and

temperature fields.

METAR observations at the forecast valid times are

used for analog downscaling and verification (i.e., every

third hour from 0000 UTC through forecast hour 30). In

very rare instances when reported observations are not

available on the hour but an observation was recorded

within 10min of the hour, values are linearly in-

terpolated in time to create an on-the-hour observation.

If an observation was both not on the hour and not re-

ported within 10min of the hour, then the observation is

marked as missing and not included in the study. The

primary METAR observations of interest are cloud

ceiling height and visibility. The reported ceiling height

and visibility observations are then classified into flight

conditions (Table 2).

b. Analog forecasts

An analog approach is used to identify similar his-

torical reforecasts to downscale the global reforecast
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to a point [in the manner of, e.g., Toth (1989) and Van

den Dool (1989)]. Vertical profiles (‘‘soundings’’) of

temperature and dewpoint temperature are created by

concatenating model output grids at 2m above the sur-

face, 1000, 850, 700, and 500 hPa (Fig. 1b). If the mod-

eled surface pressure is less than any of the isobaric grid

levels, then those levels are removed from the sounding.

Starting with 1 December 1984, every fifth day the

forecast sounding at a given lead time is compared to all

historical reforecast soundings at the same lead time

(Fig. 1c) via a normalized root-mean-square difference

(RMSD). Every fifth day is used to avoid oversampling

any single weather regime. Variables are normalized at

each pressure level by representative measurement er-

rors assigned in the Eta Data Assimilation System

(EDAS) to rawinsonde observations [see Table 2 in

Zapotocny et al. (2000) for values]. The equation for

determining the normalized RMSD is

RMSD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where T is temperature, Td is dewpoint temperature,

subscript p is the vertical level, subscript m denotes a

model (reference sounding) value, subscript r denotes a

reforecast value, and e is the representative measure-

ment error from Zapotocny et al. (2000). The 50

soundings corresponding to the smallest normalized

RMSD are considered analog forecast matches (Fig. 1d).

The quantity of 50 analog soundings is chosen so as to

provide reasonable sample size without causing over-

fitting, and it has previously been identified as adequate

for the short forecast lead times considered here

(Hamill et al. 2015). Data denial is employed for verifi-

cation and validation of the technique; as such, the

original forecast sounding is removed from the com-

parison such that the date of interest is never included as

an analog. It should be noted that we also considered

analogs including wind profiles, but this did not signifi-

cantly change the results. METAR observations at the

verifying time for each of the 50 analog reforecast

matches provide ceiling and visibility observations to

determine the downscaled flight condition at the airport

(Fig. 1e). Probability of observed flight conditions are

then determined using these observations. For example,

if 20 of the top 50 matched soundings’ METARs report

IFR conditions, then the probability of IFR is 40%. This

process is repeated for every airport for each of the 11

forecast lead times. More sophisticated methods of

ranking or weighting the analog matches may improve

results, but they were not tested here. Because 50

matches is a somewhat arbitrary choice, perfectly reliable

probabilities are unlikely without further calibration.

c. Terminal aerodrome forecasts

TAFs issued at 0600 UTC are used, since they are

informed by the 0000 UTC model runs, the same in-

formation included in the GEFS/R dataset. Forecasts

for ceiling and visibility are stripped from the text

TAFs for the appropriate forecast valid time (from

0600 through 2100 UTC). TAFs may contain a tem-

porary (TEMPO) change indicator group and a prob-

ability group, which must be addressed differently from

the change indicator group. For the period considered

in this study, only the 30% probability (Prob30) group

is standard practice. When a probability group or

temporary change indicator group is encountered, its

probability is recorded. However, if the prevailing

flight condition is the same as the Prob30 or TEMPO

group (e.g., if visibility is temporarily forecasted to

decrease but remains within the bounds of the pre-

vailing flight condition), then the probability is marked

as 100%, as with standard forecasts. Only dates that

intersect with the analog forecasts (i.e., every fifth day

during the period subset) are considered—again, to

avoid oversampling any specific weather event.

According to NWS (2016, p. 23), the TEMPO group

represents ‘‘a high percentage (greater than 50%)

probability of occurrence.’’ As such, we calculated Brier

skill scores designating TAF TEMPO forecasts as 50%,

75%, and 100% probabilities. Designating the TEMPO

group as 100% probability resulted in the most skillful

forecasts and thus proved to be the strongest competi-

tion for the analog forecast method. Likewise, Keith and

Leyton (2007) incorporated TAFs as either 0% or 100%

to study the economic value of weather forecasts. Values

reported in this paper reflect designating the TEMPO

group forecasts as 100% probability.

d. Model verification

Brier skill scores (BSS) are employed here as a

metric of skill in forecasting flight condition categories.

The BSS is a measure of the mean-square error of a

TABLE 2. Flight condition definitions. Conditions are defined on

an and/or basis with the lowest visibility or ceiling defining the

current flight conditions. Ceiling is evaluated relative to airport

elevation.

Flight condition Ceiling (ft) Visibility (statute miles)

IFR ,1000 ,3

MVFR $1000 and #3000 $3 and #5

VFR .3000 .5
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probability forecast for a dichotomous event normalized

by the same for a reference forecast (Wilks 2011).

Tested separately were the observed sample climatology

constructed from December 1984 through May 2015,

and TAFs from January 2010 through May 2015. As-

suming that each forecast is equally likely, the Brier

score of the forecast BSf is calculated as

BS
f
5

1

N
�
N

i51

(P
i
2O

i
)2 , (2)

where Pi is the forecasted event probability, and Oi is

either 1 or 0 if the event was observed or not. A BSS is

then calculated as

BSS5 12
BS

f

BS
r

, (3)

where BSr is the Brier score of the reference probability

forecast. A BSS of 0.0 indicates that the forecast has

the same skill as the reference forecast, a BSS of 1.0

indicates a perfect forecast, and a negative BSS indicates

less skill than the reference.ABSS can be interpreted as a

percent improvement over the reference dataset.

Attributes diagrams address how the predicted proba-

bilities of an event correspond to their observed frequen-

cies via a plot of observed frequency versus the forecast

probability (Wilks 2011). The range of forecast probabili-

ties has been divided into 10 bins (0%–10%, 10%–20%,

FIG. 1. Flowchart depicting the analog forecast methodology. Using cross validation, every fifth day of the refor-

ecast (to avoid oversampling dependent weather events) is tested. For example, (a) the forecast day is 1 Dec 1984

(shaded). (b) Based on the ensemble mean at forecast hour T, vertical profiles of temperature and dewpoint are

constructed for each of the Core 30 airports. (c) For each airport, the ensemblemean vertical profile is then compared

to the reforecast database at forecast hour T (excluding the day being forecast), searching for similar ensemble mean

vertical profiles at that airport (the shading depicts eligible days in the database). (d) The nearest 50matches based on

Eq. (1) (see text for details) are identified at forecast hourT. For the sake of illustration, assume the airport is ZZZ at

forecast hour T 5 21 (which would be valid at 2100 UTC, since the reforecast always begins at 0000 UTC). (e) The

actual METARs valid at the matching day and time (again, time in this example would be 2100 UTC) are collected to

form the possible outcomes at the actual station based on similar ensemble mean vertical profiles. (f) From this

collection of 50 METARs, the frequency of actual surface conditions that occurred based on similar vertical

profiles is used to build probabilistic forecasts of ceiling, visibility, and flight condition. Given a robust sample of

quality matches, the collection of information represented by the cumulative distribution function in (f) should

account for systematic model bias, chaotic error growth, and downscaling of the gridded values to a point.
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etc.). Deviation of the curve from the major diagonal 1:1

line (‘‘perfect reliability’’ line) gives the conditional bias. If

the curve lies above the perfect reliability line, then un-

derforecasting (probabilities too low) is indicated, and

conversely points on the curve that fall below this line in-

dicate overforcasting (probabilities too high). The hori-

zontal and vertical dashed lines indicate climatological

frequency, where the horizontal line can be considered the

‘‘no resolution’’ line. The flatter the curve, the less reso-

lution it has, since it approaches climatology, which in-

herently does not discriminate between events and

nonevents. The diagonal line halfway between the no res-

olution line and the perfect reliability line can be considered

the no skill line, since points that fall along it do not add to

the BSS, while points that fall below contribute negatively

to the BSS, and points that lie above it contribute positively

to the BSS. Included on each attributes diagram is an inset

histogram displaying the frequency of forecasts in each

probability bin. Diagrams were created for a composite of

the 29 CONUS airports and a composite of the three

Golden Triangle airports at 0-, 12-, and 24-h lead times

for the period from December 1984 through May 2015.

Relative operating characteristic (ROC) curves convey a

measure of discrimination, or classifying event occurrence

versus nonoccurrence. (Mason 1982). ROC curves were

created for the three Golden Triangle airports for the an-

alog forecast method and for TAFs by plotting the proba-

bility of detection (hit rate) versus the probability of false

detection (false alarm rate). A perfect curvewill travel from

the bottom-left corner to the top-left corner and continue

across the top to the top-right corner. Conversely, a curve

depicting no skill (i.e., a random forecast) will follow the

major diagonal from (0, 0) to (1, 1). The area under the

ROCcurve is typically between 0.5 and 1.0.An area greater

than or equal to 0.70 is considered to have a reasonable

amount of skill in discriminating between events and non-

events (Stanski et al. 1989), with 1.0 indicative of a perfect

classifier. Areas under the ROC curves were calculated

using a trapezoidal method, although this method may un-

derestimate the area under curves defined by few points.

4. Results

a. Ensemble mean versus climatology

BSS versus forecast lead time for each airport is shown

in Fig. 2 for IFR conditions (see Fig. 4 below for VFR

conditions).Marginal visual flight rule (MVFR; defined in

Table 2) conditions were examined but are not included

in these results because of the coarse vertical resolution

of the reanalysis grids (which are available on mandatory

isobaric levels only). With so few vertical levels available in

the reanalysis to define thin layers of the lower troposphere,

there is insufficient vertical resolution to differentiate cloud

ceilings that in reality differ by only hundreds of meters.

Hence, because of the coarse vertical resolution of the

reforecast dataset, only the results for VFR and IFR

predictions are shown. Recall all forecasts are initialized at

0000UTC.Tomore concisely examine the results,webriefly

discuss patterns across the Core 30 airports but focus on

three airports in the aviation Golden Triangle: ATL, ORD,

and JFK. The forecast skill relative to the sample climate of

the study period (from December 1984 through May 2015

for all seasons, or for only the applicable months within this

period for each particular season; referred to as ‘‘climatol-

ogy’’) is examined for each forecast lead time for the entire

record as well as for each season.

1) IFR

(i) All seasons

The GEFS/R data considered through this analog

downscaling method show skillful improvement over cli-

matology (IOC) for forecasting IFR conditions at the

majority of the Core 30 airports for all forecast lead times

(Fig. 2). As a convention, IOC implies positive (skillful)

improvement throughout the results presented here unless

otherwise noted. This is particularly the case for airports in

theMidwest, New England, and the South (sans several in

Florida)with a 15%–25%IOC.For nearly all airports, skill

decreases with increasing forecast lead time. Airports in

New England, theMidwest, and the South, except Florida

andMemphis, Tennessee, show a diurnal cycle in skill with

the maximum occurring during late afternoon and early

evening local time. Forecast skill for the Florida airport

cluster remains well separated from the rest of the airports

in the South, particularly during these late afternoon/early

evening times with IOC of 1%–10%. This analog down-

scaling method for airports in the West and Florida shows

the least improvement over climatology, with PHX, MIA,

and FLL showing negative skill during short lead times,

with the addition of DEN and TPA showing negative skill

at long lead times (see Table 1 for airport identifiers).

The threeGolden Triangle airports show IOC at all lead

times with localized peaks at 0000 and 2100 UTC, and

otherwise a slight decrease in skill with increasing lead

time (Fig. 3, top-left panel). A bootstrapping procedure

with 10000 samples was employed to obtain confidence

intervals (not shown) and confirmed that the IOC is sig-

nificant at all lead times at the 95% confidence level.

(ii) Seasons

For the discussion of seasonal differences, only the skill

scores of the three Golden Triangle airports and their

composite are examined. The composite (solid line) of all

three Golden Triangle airports show IOC for all lead times
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during each season (Fig. 3). The transitional seasons (MAM

andSON) show the greatest decrease in IOCwith increasing

lead time, with Chicago (dashed–dotted line), even having a

negative IOCat 30-h lead time during springmonths. IOC is

consistently highest across the three airports during winter

(DJF), when IFR conditions aremost prevalent. In contrast,

IOC is consistently lowest during summer (JJA).

2) VFR

(i) All seasons

BSSs for VFR conditions across CONUS for all

seasons versus lead time are displayed in Fig. 4.

Considering all seasons, forecasts for VFR utilizing

this analog approach show IOC for all lead times at all

airports. Generally, forecasts of VFR show greater

improvement over climatology than are seen for IFR.

Regionally, the greatest skill is seen in New England,

with high skill also seen in theMidwest andmuch of the

South. These areas have many Core 30 airports with

values around 30%–40% IOC. As with IFR, BSSs for

the Florida airports are much lower than the rest of the

airports in the South. The low and fairly constant BSSs

seen in the Florida airports are similar to those ob-

served in LAS and DEN. Excluding the West and

Florida airports, a diurnal cycle in BSS is observed

FIG. 2. BSSs computed for all seasons for IFR at the Core 30 airports across the CONUS at each forecast lead time. Perimeters of the

circles denote positive (red) or negative (blue) skill. Shading within each circle denotes the skill score magnitude.
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FIG. 3. BSSs (IOC) for theGoldenTriangle airports vs forecast lead time for (left) IFR and (right)VFR

for (top) all seasons, as well as for each season. All panels showATL (dashed line), ORD (dashed–dotted

line), JFK (dotted line), and a composite of all three airports (solid line).
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with maxima occurring during local late afternoon.

Employing a bootstrapping procedure, BSSs for the

Golden Triangle airports are determined to have sig-

nificant improvement over climatology at all lead times

at the 95% confidence level.

(ii) Seasons

For the Golden Triangle airports (Fig. 3) every season

shows a slight increase in IOC for VFR between 12- and

18-h lead times before decreasing through a 30-h lead

time. Skill is most spread among the three airports during

winter months (DJF) with JFK performing consistently

better than the other two airports. During winter in

Chicago at a 6-h lead time IOC dips to nearly 0. As with

IFR, the Golden Triangle airports consistently have the

lowest IOC for VFR during summer months (JJA).

b. Attributes diagrams

1) CONUS

Attributes diagrams are utilized to further examine

the probabilistic skill of this analog forecast approach to

forecast IFR and VFR at 0-, 12-, and 24-h lead times by

compositing forecasts for the 29 airports across the

CONUS for all seasons (Fig. 5). For both IFR and VFR,

forecasts for all three lead times show very good

FIG. 4. As in Fig. 2, but for VFR.
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FIG. 5. Attributes diagrams from compositing forecasts for the 29 CONUS Core 30 airports for (top) 0-,

(middle) 12-, and (bottom) 24-h lead times for (left) IFR and (right) VFR. Shown is the observed relative

frequency (black line) with white filled circles denoting the center of the forecast probability bins. Perfect

forecast reliability (1:1) is plotted as a solid gray line for reference. Climatological frequency of conditions is

plotted as the horizontal dashed line. The solid gray line falling halfway between the climatological frequency

line and perfect reliability line is the ‘‘no skill’’ line. Any points that lie on the no skill line do not add to the

BSS. The inset bar graph displays the number of observations in each forecast probability bin.
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reliability and resolution. Forecasts at 12-h lead times

show the best calibration, followed closely by 24-h

forecasts. Forecasts with a 0-h lead time for IFR have

good reliability for the most populated bins and start

to underforecast at and above 50% forecast probability.

It is unclear why this underforecast is observed at

higher probabilities at the initial time, but it could be

attributable to overperturbing the initial conditions of

the ensemble, the horizontal and vertical resolution of

the reforecast data, or some combination thereof.

Conversely, at 0-h lead times VFR is slightly over-

forecasted for probabilities of 20%–60%, which again

may have something to do with the perturbations in the

GEFS/R.

FIG. 6. As in Fig. 5, but for attributes diagrams from compositing the three airports in the Golden Triangle.
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2) GOLDEN TRIANGLE

Forecasts for three Golden Triangle airports are

composited at 0-, 12-, and 24-h lead times to examine

IFR and VFR forecast reliability for all seasons (Fig. 6).

Generally, forecasts for IFR are fairly reliable at all

three lead times. This is a little surprising in that

choosing the top 50 matches was somewhat arbitrary,

and no further calibration was performed to improve

reliability. In forecasting IFR, the reliability (calibra-

tion) for the Golden Triangle is best for 12-h lead times.

Results at both 12- and 24-h lead times are quite reliable

through about 50% and show good resolution through

about 70%. As the sample size decreases probabilities

above about 50%, the results become a little choppy as a

result of decreasing sample size. Unsurprisingly, the

number of observations in each forecast probability bin

is more evenly distributed across the bins for the 12-h

lead time forecasts than the other two lead times. This

valid time would be the early morning hours (local

time), when climatologically IFR conditions are more

prevalent.

Forecasts for VFR are more reliable at the higher

probability bins (higher forecast probabilities for VFR)

and tend to overforecast the occurrence of VFR at lower

probabilities. Overall, this analog method shows very

good calibration for forecasting VFR at both 12- and

24-h lead times. Forecasts at 0-h lead times also show

very good reliability for the highest forecast probabilities.

c. Ensemble mean versus TAFs

Forecast skill relative to TAFs for the period from

January 2010 throughMay 2015 is examined for forecast

lead times every 3 h from 6 through 21h. Recall that all

reforecasts are initialized at 0000 UTC; thus, we com-

pare these reforecasts to TAFs issued at 0600 UTC so as

to reflect the same model information. BSS versus

forecast lead time for our subsample of Golden Triangle

airports is shown in Fig. 7 for IFR conditions and VFR

conditions.

1) IFR

The composite of the three Golden Triangle airports

(Fig. 7, solid line) shows that TAFs outperform the an-

alog forecast method through 1200 UTC, but starting at

1500 UTC the analog forecast method shows an im-

provement over the TAFs. JFK (dotted line) has a very

similar pattern to the composite but with even lower Brier

skill scores. Atlanta (dashed line) initially at 0600 UTC

has a negative BSS (i.e., TAFs perform better than

the analog forecast method); however, just 3 h later

through the end of our study period, BSSs become

positive with a general increase at the end at 2100 UTC.

Unlike the other two airports, Chicago O’Hare

(dashed–dotted line) initially has a positive BSS de-

creasing to a negative value at 1200UTC then bouncing

back to positive again through 2100 UTC. Focusing

on the composite BSS, TAFs outperform the analog

forecast method through 1200 UTC, but then the ana-

log forecast method begins to outperform the forecasts.

BSSs are statistically significant at the 95% confidence

level (not shown) for 0600 and 2100 UTC.

2) VFR

For VFR conditions, the composite of our three

Golden Triangle airports have a negative BSS at

0600 UTC, then negligible (i.e., TAFs and the analog

forecast method are equally skillful at forecasting VFR

at 0900 and 1200 UTC) with increasing improvement

FIG. 7. BSSs (improvement over TAFs) vs forecast valid time

calculated over all seasons for (top) IFR and (bottom) VFR.

Shown are ATL (dashed line), ORD (dashed–dotted line), JFK

(dotted line), and a composite of the three airports (solid line).

Sample size is 382 days for each airport.
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over the TAFs through 2100 UTC (Fig. 7, bottom

panel). VFR TAFs at ORD (dashed–dotted) out-

perform the analog forecast method through 1800 UTC

until the analog forecast method shows improvement

over TAFs at 2100UTC. In contrast, both ATL and JFK

have initially negative BSSs, but starting with forecasts

from 1200 through 2100 UTC the BSSs become positive,

showing the analog forecast method outperforms the

TAFs for VFR forecasts during these forecast times. As

with IFR, BSSs for VFR are statistically significant at

the 95% confidence level (not shown) for 0600 and

2100 UTC as determined by bootstrapping.

d. ROC curves

ROC curves are created for our three Golden Triangle

airports for lead times of 6–21h (Fig. 8). The analog fore-

casts for VFR (red lines) and IFR (blue lines) and their

corresponding area under the curve (corresponding num-

ber in color in each panel) show that in all cases the analog

forecast method clearly has the ability to discriminate

events, whether IFR or VFR, from nonevents. For all pe-

riods and each of the three airports, the area under the

curve is greater than 0.7 and often greater than 0.8,

reflecting a useful predictive discrimination ability. Fore-

casts for VFR at JFK consistently have higher predictive

ability than IFR based on the geometric area under the

ROC curve, while the opposite is true at ATL.

5. Discussion

Overall, the analog approach demonstrated here

provided skillful improvement over climatology. Re-

sults were most positive in areas of flat, homogeneous

terrain away from strong coastal, convective, and geo-

graphic influences. Asmight be expected, IOC generally

decreased with increasing forecast lead time. A distinct

seasonal cycle in IOC was seen at airports across the

United States, as highlighted by the results presented

here for theGolden Triangle airports, with greatest IOC

for both IFR and VFR observed during winter months.

Composite attributes diagrams for the Golden Triangle

and CONUS demonstrated very good resolution and

reliability from these analog forecasts.

Generally, forecasts for airports located in the West

and in Florida tended to show the least skill, and at times

negative skill relative to climatology, as compared to the

other Core 30 airports. Because of the coarse resolution

of the available reforecast dataset (18 3 18 horizontally,
and surface plus mandatory levels vertically), we pos-

tulate that most of these issues arise because of where

the bounding latitude–longitude points exist for these

airports and the lack of similarity of these points and the

location of the airport. For example, values for SEA

must be interpolated from data points located nearly in

the Strait of Juan de Fuca as well as in the Cascades on

the slopes of Mt. Rainier. Likewise, the model tends to

struggle for many airports that include bounding boxes

with vertices in the ocean, such as SAN, FLL, and LAX,

and also mountainous regions such as those surrounding

LAS and DEN. It is possible that improvement could be

gained by refining the interpolation technique to con-

sider only representative grid point(s); however, as a

proof-of-concept study in reforecast applications to

aviation forecasting, the most notable and obvious rec-

ommendation is to build operational reforecast systems

on higher-resolution operational ensemble systems.

Low and/or negative skill also occurs at some locations

in the Southwest and Intermountain West that receive

very little IFR, particularly during the warm season,

making it such a rare event that climatology becomes

extremely competitive, particularly considering the low

resolution of the reforecast. Places that are more geo-

graphically homogeneous, such as CLT, EWR, andATL

perform much better with typically higher skill scores

throughout. Generally, and perhaps of greatest aviation

significance, this postprocessing method performs with

rather impressive skill for the Golden Triangle (New

York–Atlanta–Chicago) for IFR and VFR throughout

the year and for all lead times.

For our subset of Golden Triangle airports (JFK,

ATL, and ORD), the analog forecast approach tested

here begins to show improvements over TAFs for both

IFR and VFR starting at 1500 UTC (9h after TAF

issuance) through the end of our study period at

2100 UTC. The TAF is produced by the NWS forecaster

taking into account current observations, radar, satellite,

short-term trends, deterministic and ensemble modeling

systems of various resolutions, and postprocessed guid-

ance. Its superiority in the short lead time is likely due to

the mental and numerical assimilation of these higher-

resolution datasets. The analog forecast method’s im-

provement over the TAF after about forecast hour 9 is

likely due to the systematic, ensemble-based approach.

One would hypothesize that a higher-resolution refor-

ecast system would improve the ensemble prediction at

shorter lead times. While we examined TAFs issued

only at 0600 UTC, since they are informed by the

0000 UTC models, same as the GEFS/R dataset, it

should be noted that TAFs are updated operationally

every 6h. ROC curves computed every 3 h confirm there

is some improved predictive skill over TAFs in the an-

alog forecast method.

As mentioned, the low vertical resolution impacts the

skill of the model and postprocessing to predict low

clouds and visibility. Reforecast grids are archived

at most mandatory isobaric levels, resulting in data
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FIG. 8. ROC curves by forecast valid time for (top) JFK, (middle)

ATL, and (bottom) ORD showing the curve for the analog forecast

method (red) and the area under the curve (blue) for IFR and VFR,

and for TAFs the ROC curves (magenta) and the corresponding area

under the curve (cyan) for IFR and VFR.
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concentrated near the surface but with otherwise large

gaps in the atmospheric column. Because of this crude

vertical resolution, low cloud layers and inversion height

may be poorly simulated and not well represented in

the reforecast archive. Likewise, because of the coarse-

resolution, MVFR conditions are not reliably identified

as a result of the narrow band of the atmosphere that

defines the flight condition and, as such, was necessarily

left out of the reported results. Increasing vertical res-

olution (of the native model and archive) would allow

for identifying analogs through the inclusion of more

levels, providing better identification ofmoist atmospheric

processes. Additionally, increasing vertical resolution

would allow for the integration of fog and turbulence

models to further aid in the forecasting of surface visibility

and low clouds. This would be particularly helpful for air

traffic along theWestCoast and theGulf ofMexico, where

fog is a major impediment. Considering the low resolution

available for constructing historical reforecast analogs and

the results presented here, a mesoscale reforecast system

with higher-resolution reforecast archives would likely

improve results and be a powerful postprocessing resource

for aviation forecasting.

6. Conclusions

This research makes an initial foray into analog-type

postprocessing of NOAA’s second-generation Global

Ensemble Forecast System Reforecast for aviation ap-

plications. Results show this postprocessing method

yields skillful predictions discerning IFR and VFR flight

conditions out to 30h for the majority of Core 30 air-

ports. This is particularly true for those airports in the

central and eastern United States, which happen to be

most critical to the nation’s air traffic flow management.

The overall results are encouraging and suggest refor-

ecasting is a useful approach for aviation forecast post-

processing. Based on this study, the reforecast dataset

is suitable for aviation decision support services and un-

derscores the importance of ensemble and reforecast

postprocessing as a continuing goal of the NGGPS.

Extrapolating these results beyond this initial study

suggests that higher-resolution (i.e., mesoscale or con-

vection allowing) models and accompanying reforecast

systems would be of great value to aviation weather

postprocessing. Further research should focus on sys-

tems with higher vertical and horizontal resolution, op-

timal methods of analog matching, improved statistical

weighting and calibrating of close analogs, ensemble

reforecast membership size, and utilizing some or all of

the individual members versus using only the ensemble

mean. Extensions of the approach could also include

additional aviation variables, such as low-level wind

shear, mountain waves, icing, and turbulence. In this

case, skill was based on sample climatology and a subset

of the dataset was compared against TAFs, but ex-

panding the comparison with TAFs and/or calculating

skill based on existing statistical guidance would be en-

lightening. Finally, extracting the most likely de-

terministic forecast to accompany the probabilistic

forecast would be a necessary extension to satisfy the

aviation community.

Acknowledgments. The scientific results and conclu-

sions, as well as any views or opinions expressed herein,

are those of the authors and do not necessarily reflect

the views of the NWS, NOAA, or the Department of

Commerce. This research was supported by the NOAA/

NWS Next Generation Global Prediction System

(NGGPS) project, in cooperation with theNOAA/NWS

Aviation Weather Testbed and the NOAA/NWS

Western Region. The authors thank Ron Beitel for his

invaluable computing insights and enthusiasm and are

grateful to three anonymous reviewers who improved

the quality of the manuscript. This research would not

have been possible without access to the GEFS Refor-

ecast 2 model data provided by the NOAA/Earth System

Research Laboratory, METAR data provided by the

NOAA/National Centers for Environmental Information,

and historical TAF data accessed through Ogimet.

REFERENCES

Baker, S. P., D. F. Shanahan, W. Haaland, J. E. Brady, and G. Li,

2011: Helicopter crashes related to oil and gas operations in

the Gulf of Mexico. Aviat. Space Environ. Med., 82, 885–889,

doi:10.3357/ASEM.3050.2011.

Hagedorn, R., T. M. Hamill, and J. S. Whitaker, 2008: Probabilistic

forecast calibration using ECMWF and GFS ensemble refor-

ecasts. Part I: Two-meter temperatures. Mon. Wea. Rev., 136,

2608–2619, doi:10.1175/2007MWR2410.1.

Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative

precipitation forecasts based on reforecast analogs: Theory

and application.Mon. Wea. Rev., 134, 3209–3229, doi:10.1175/

MWR3237.1.

——, ——, and X. Wei, 2004: Ensemble re-forecasting: Improving

medium-range forecast skill using retrospective forecasts. Mon.

Wea. Rev., 132, 1434–1447, doi:10.1175/1520-0493(2004)132,1434:

ERIMFS.2.0.CO;2.

——, ——, and S. L. Mullen, 2006: Reforecasts: An important

dataset for improving weather predictions. Bull. Amer. Me-

teor. Soc., 87, 33–46, doi:10.1175/BAMS-87-1-33.

——, G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J.

Galameau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s

second-generation global medium-range ensemble reforecast

dataset. Bull. Amer. Meteor. Soc., 94, 1553–1565, doi:10.1175/

BAMS-D-12-00014.1.

——, M. Scheuerer, and G. T. Bates, 2015: Analog probabilistic

precipitation forecasts using GEFS reforecasts and climatology-

calibrated precipitation analyses. Mon. Wea. Rev., 143,

3300–3309, doi:10.1175/MWR-D-15-0004.1.

OCTOBER 2017 VERL INDEN AND BR IGHT 1779

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:51 PM UTC

http://dx.doi.org/10.3357/ASEM.3050.2011
http://dx.doi.org/10.1175/2007MWR2410.1
http://dx.doi.org/10.1175/MWR3237.1
http://dx.doi.org/10.1175/MWR3237.1
http://dx.doi.org/10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2
http://dx.doi.org/10.1175/BAMS-87-1-33
http://dx.doi.org/10.1175/BAMS-D-12-00014.1
http://dx.doi.org/10.1175/BAMS-D-12-00014.1
http://dx.doi.org/10.1175/MWR-D-15-0004.1


Herman, G. R., and R. S. Schumacher, 2016: Using reforecasts to

improve forecasting of fog and visibility for aviation. Wea.

Forecasting, 31, 467–482, doi:10.1175/WAF-D-15-0108.1.

Keith, R., and S. M. Leyton, 2007: An experiment to measure the

value of statistical probability forecasts for airports. Wea.

Forecasting, 22, 928–935, doi:10.1175/WAF988.1.

Lorentson,M., 2013: Scale normalization for IFR-frequency effects

in aviation forecast performance statistics. J. Oper. Meteor., 1,
275–281, doi:10.15191/nwajom.2013.0122.

Mason, I., 1982: Amodel for assessment of weather forecasts.Aust.

Meteor. Mag., 30, 291–303.

NOAA, 1998: Automated Surface Observing System (ASOS)

user’s guide. 74 pp., http://www.nws.noaa.gov/asos/pdfs/

aum-toc.pdf.

NTSB, 2014: General aviation: Identify and communicate haz-

ardousweather. NTSBmost wanted list, https://www.ntsb.gov/

safety/mwl/Pages/mwl7_2014.aspx.

NWS, 2016: Terminal aerodome forecasts. National Weather Ser-

vice Instruction 10-813, NWSPD 10-8, 39 pp., http://www.nws.

noaa.gov/directives/.

Reynolds, D. W., D. A. Clark, F. W. Wilson, and L. Cook, 2012:

Forecast-based decision support for San Francisco International

Airport: A NextGen prototype system that improves operations

during summer stratus season. Bull. Amer. Meteor. Soc., 93, 1503–

1518, doi:10.1175/BAMS-D-11-00038.1.

Stanski, H., L. J. Wilson, and W. R. Burrows, 1989: Survey of

common verification methods in meteorology. Atmospheric

Environmental Service Research Rep. MSRB 89-5, WWW

Tech. Rep. 8, WMO/TD-358, 114 pp.

Toth, Z., 1989: Long-range weather forecasting using an ana-

log approach. J. Climate, 2, 594–607, doi:10.1175/

1520-0442(1989)002,0594:LRWFUA.2.0.CO;2.

Van den Dool, H. M., 1989: A new look at weather forecasting

through analogues. Mon. Wea. Rev., 117, 2230–2247,

doi:10.1175/1520-0493(1989)117,2230:ANLAWF.2.0.CO;2.

Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences.

3rd ed. Elsevier, 676 pp.

——, and T. M. Hamill, 2007: Comparison of ensemble-MOS

methods using GFS reforecasts. Mon. Wea. Rev., 135, 2379–

2390, doi:10.1175/MWR3402.1.

Zapotocny, T. H., and Coauthors, 2000: A case study of the sen-

sitivity of the Eta Data Assimilation System. Wea. Fore-

casting, 15, 603–621, doi:10.1175/1520-0434(2000)015,0603:

ACSOTS.2.0.CO;2.

1780 WEATHER AND FORECAST ING VOLUME 32

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:51 PM UTC

http://dx.doi.org/10.1175/WAF-D-15-0108.1
http://dx.doi.org/10.1175/WAF988.1
http://dx.doi.org/10.15191/nwajom.2013.0122
http://www.nws.noaa.gov/asos/pdfs/aum-toc.pdf
http://www.nws.noaa.gov/asos/pdfs/aum-toc.pdf
https://www.ntsb.gov/safety/mwl/Pages/mwl7_2014.aspx
https://www.ntsb.gov/safety/mwl/Pages/mwl7_2014.aspx
http://www.nws.noaa.gov/directives/
http://www.nws.noaa.gov/directives/
http://dx.doi.org/10.1175/BAMS-D-11-00038.1
http://dx.doi.org/10.1175/1520-0442(1989)002<0594:LRWFUA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1989)002<0594:LRWFUA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1989)117<2230:ANLAWF>2.0.CO;2
http://dx.doi.org/10.1175/MWR3402.1
http://dx.doi.org/10.1175/1520-0434(2000)015<0603:ACSOTS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(2000)015<0603:ACSOTS>2.0.CO;2

